If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x+7=0
a = 2; b = -16; c = +7;
Δ = b2-4ac
Δ = -162-4·2·7
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-10\sqrt{2}}{2*2}=\frac{16-10\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+10\sqrt{2}}{2*2}=\frac{16+10\sqrt{2}}{4} $
| 40x-150=30 | | 3n+6=305 | | 5n-1=129 | | 5n-1=34 | | X=425-y | | X+8=6x+2 | | 3(5+4x)=63 | | 7(4x-3)=7 | | B(x)=-3x2+138x-912 | | 3h+7=28 | | 3(12+3x)=9 | | 8e+14=70 | | x354=0.354x | | 2x=56x/5 | | x=x46+x | | P(x)=x-2x+5 | | 4(5+2x)=-12 | | 3(8-2p)=-3(1+3p) | | -5(x+10=-105 | | 5c(49c+3c)=456c | | 5(3+4c)=55 | | 2r-7=4r-3 | | X^5=100x^-3 | | 1/3(2x-3)+2=5/6(x+3)-5/12 | | 10+2x=7x-5 | | 7p-5=4p-3 | | 3(4x+2)=-18 | | (2x-1)*(-4x-3)=4 | | 3x-1=4x+5+7x-6 | | 1/2(6c-4)=4/c | | x–35=54 | | 27x-2=12x73 |